

Development Standards & Practices Used
730-2014 - IEEE Standard for Software Quality Assurance Processes | IEEE Standard | IEEE Xplore

- We will use the IEEE standard for software quality assurance processes because we are
making a software product that needs testing . This standard talks about how we should
make a software quality assurance process in order to confirm that our product meets the
established requirements that were given.

1219-1998 - IEEE Standard for Software Maintenance | IEEE Standard | IEEE Xplore

- We will adhere to this standard in how we will handle maintenance of Memworld. This
standard shows the groundwork for testing and adhering to client given requirements for
software that is undergoing development. The standard goes into detail about having a
control group of requirements that needs to be maintained as development on the project
continues.

24748-5-2017 - ISO/IEC/IEEE International Standard - Systems and Software Engineering--Life Cycle
Management--Part 5: Software Development Planning | IEEE Standard | IEEE Xplore

- This standard talks about systems and software engineering with life cycle management.
We would be focusing on the software development planning section of this standard. This
talks about using peer reviews and testing during development as well as coding standards
in order to have a clear understanding that our project is working and how it works.

Summary of Requirements

Requirements/specifications:
- Must use "direct-memory" representation and rendering
- Must parallelize rendering algorithm using GPGPU
- Preferably use a portable GPGPU framework, both in terms of hardware and OS
- Must characterize performance in terms of FPS and determine speedup from GPGPU

parallelization
- Performance target is 30 FPS or higher with the following settings:

- 1024 x 768 resolution or higher
- Voxel density of 5 or higher
- Max draw distance of 100 voxels or higher

Test application requirements:
- Must use parallelized engine
- Should be portable
- Should highlight advantages/strengths of engine
- Visually pleasing UI
- May incorporate major new features such as physics, destructible environment, lighting,

etc.

MEMWORLD GPGPU ACCELERATION 1

https://ieeexplore.ieee.org/document/6835311
https://ieeexplore.ieee.org/document/720567
https://ieeexplore.ieee.org/document/7955095
https://ieeexplore.ieee.org/document/7955095

Table of Contents
1 Introduction 6

1.1 Problem Statement 6

1.2 Requirements & Constraints 6

1.3 Engineering Standards 6

1.4 Intended Users and Uses 7

2 Project Plan 8

2.1 Project Proposed Milestones, Metrics, and Evaluation Criteria 8

2.2 Project Timeline/Schedule 8

2.3 Other Resource Requirements 9

3 Security 10

3.1 Cyber Security Concerns 10

3.2 Cyber Security Countermeasures 10

4 Design 11

4.1 Prior Work 11

4.1.1 Prior Work/Solutions 11

4.1.2 Comparison to Prior Work/Solutions 11

4.2 Design Evolution 12

4.2.1 Renderer 12

4.2.2 Physics 13

4.2.3 Memworld 13

4.2.4 OpenCL Implementation 14

5 Testing 15

5.1 Testing Process 15

5.1.1 Unit Testing 15

5.1.2 Interface Testing 15

5.1.3 Integration Testing 15

5.1.4 System Testing 16

5.1.5 Regression Testing 16

MEMWORLD GPGPU ACCELERATION 2

5.1.6 Acceptance Testing 17

5.2 Testing Results 17

6 Implementation 19

6.1 Memworld Implementation 19

6.1.1 World Chunks 19

6.1.2 Moving Objects 19

6.1.3 Input Handling 19

6.2 OpenCL Implementation 20

6.2.1 Setup 20

6.2.2 Adding Objects to the World 20

6.2.3 Main Loop 20

6.2.4 Teardown 20

6.3 Renderer Implementation 20

6.3.1 Object Rotation 21

6.4 Lighting 21

6.4.1 Distance based 21

6.4.2 Ray based 22

6.4.3 Pixel Density 23

6.5 Physics Implementation 23

6.5.1 Bounding box based collision 23

6.5.2 Voxel based collision 23

6.5.3 Moving platforms 24

6.6 Worlds Implementation 24

6.6.1 Memworld Test Application Design 24

6.6.2 Hub World 24

6.6.3 World 1 25

6.6.4 World 2 25

6.6.5 World 3 26

MEMWORLD GPGPU ACCELERATION 3

6.6.6 World 4 26

6.7 UI Implementation 27

6.8 File Importer Implementation 27

6.8.1 Type of Files 27

6.8.2 How it Works 27

6.9 Unit Tests Implementation 27

7 Closing Material 28

7.1 Discussion 28

7.2 Conclusion 28

7.3 References 29

7.4 References - Art Assets 29

8 Appendices 30

8.1 Operational Manual 30

Setup for Windows: 30

Part 1: Downloads 30

Part 2: Setup 30

Part 3: Installing glfw 30

Part 4: Installing OpenCL 31

Part 5: Running the project 31

Setup for Mac: 31

Part 1: Downloads: 31

Part 2: Setup: 31

Part 3: Run the program 32

Using the Application (Applies to Both Platforms): 32

8.2 Alternative Versions of the Design 33

MEMWORLD GPGPU ACCELERATION 4

List of figures/tables/symbols/definitions

Figures:

Project Timeline 9

System Interaction Diagram 12

Object Rotation 21

Distance Based Lighting 21

Ray Based Lighting 22

Pixel Density 23

Hub World 24

World 1 25

World 2 25

World 3 26

World 4 26

UI Implementation 27

Octree Ray Casting Diagram 34

Tables:

Target Specifications 18

Testing Specifications 18

Systems of Each Team Member 19

Definitions:

GPGPU - General-purpose computing on graphics processing units, uses the GPU to perform
computation normally done by the CPU.

Voxel - A basic unit of a three-dimensional digital representation of an image or object.

Parallelization - A program or system that processes data in parallel threads.

Octree - A tree data structure where each internal node has eight children.

MEMWORLD GPGPU ACCELERATION 5

1 Introduction

1.1 PROBLEM STATEMENT

The goal of our Senior design project is to update and improve the direct memory rendering model
created by Dr. Wymore, including features by his request or to our interest. These features include,
but are not limited to, increased resolution, improved frame rate or run speed, and inclusion of
miscellaneous object interactions such as physics and collision. At the end of the project, the team
will create a simple game to show off these improvements and additional features.

1.2 REQUIREMENTS & CONSTRAINTS

Final deliverables are:
1. GPGPU-parallelized Memworld engine
2. Memworld test/demonstration application

Requirements/specifications:
1. Must use "direct-memory" representation and rendering (constraint)
2. Must parallelize rendering algorithm using GPGPU (constraint)
3. Preferably use a portable GPGPU framework, both in terms of hardware and OS

(constraint)
4. Must characterize performance in terms of FPS and determine speedup from GPGPU

parallelization (constraint)
5. Performance target is 30 FPS or higher with the following settings:
6. 1024 x 768 resolution or higher (constraint)
7. Voxel density of 5 or higher (constraint)
8. Max draw distance of 100 voxels or higher (constraint)

Test application requirements:
1. Must use parallelized engine (constraint)
2. Should be portable (constraint)
3. Should highlight advantages/strengths of engine
4. Visually pleasing UI
5. May incorporate major new features such as physics, destructible environment, lighting,

etc.

1.3 ENGINEERING STANDARDS

730-2014 - IEEE Standard for Software Quality Assurance Processes | IEEE Standard | IEEE Xplore

- We will use the IEEE standard for software quality assurance processes because we are
making a software product that needs testing . This standard talks about how we should
make a software quality assurance process in order to confirm that our product meets the
established requirements that were given.

1219-1998 - IEEE Standard for Software Maintenance | IEEE Standard | IEEE Xplore

- We will adhere to this standard in how we will handle maintenance of Memworld. This
standard shows the groundwork for testing and adhering to client given requirements for

MEMWORLD GPGPU ACCELERATION 6

https://ieeexplore.ieee.org/document/6835311
https://ieeexplore.ieee.org/document/720567

software that is undergoing development. The standard goes into detail about having a
control group of requirements that needs to be maintained as development on the project
continues.

24748-5-2017 - ISO/IEC/IEEE International Standard - Systems and Software Engineering--Life Cycle
Management--Part 5: Software Development Planning | IEEE Standard | IEEE Xplore

- This standard talks about systems and software engineering with life cycle management.
We would be focusing on the software development planning section of this standard. This
talks about using peer reviews and testing during development as well as coding standards
in order to have a clear understanding that our project is working and how it works.

1.4 INTENDED USERS AND USES

The main beneficiaries for this project are Game Developers, specifically those that fit the niche of
wanting a voxel-based game engine with a focus on performance. They will use it as a game
developer would use any other game engine, as a tool to develop games. The difference with
Memworld is that it will give a direct memory representation of what it is rendering.

- Use Case 1: Render an object/world
- Use Case 2: Physics simulation on voxels
- Use Case 3: Create a visual representation of current memory storage

MEMWORLD GPGPU ACCELERATION 7

https://ieeexplore.ieee.org/document/7955095
https://ieeexplore.ieee.org/document/7955095

2 Project Plan

2.1 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA

Milestones:
- Performance:

- 30 FPS or higher with the following settings
- Voxel density of 5 or higher
- 1024 x 768 resolution or higher
- Render distance of 100 voxels or higher

- Physics (all require under 2 fps slowdown from current implementation):
- Objects can fall
- Objects can collide and stop movement

- Simple rigid body physics
- Lighting
- Ray trace from object to light source (1 bounce from object)

- Object importing:
- Can import a world of 256 x 256 x 256
- Can import individual objects up to 64 different objects

- Portability:
- 2 platforms (Windows and Mac)

2.2 PROJECT TIMELINE/SCHEDULE

Project Timeline

MEMWORLD GPGPU ACCELERATION 8

2.3 OTHER RESOURCE REQUIREMENTS

- Research Time
- Internet access for research

- Google Scholar
- Access to a computer

- Windows
- Mac
- Linux (if time permits)

- Required programs
- MinGW
- GLFW
- an IDE (member’s choice)
- Cmake
- Vulcan
- MagicaVoxel

MEMWORLD GPGPU ACCELERATION 9

3 Security

3.1 CYBER SECURITY CONCERNS

The main cyber security concern that our project contains is that we are reading from a file that
users are able to modify. Ideally, we would have a fixed set of inputs that the user can’t deviate
from, but due to time constraints, we use a plain text file for settings. We must ensure that we are
reading the files in a secure manner and that buffer overflows are not possible when using input
files. We also must make sure that the inputs are in the range of normal operation to make sure
that our program doesn’t crash unexpectedly.

The next security concern that our project contains relates to reading in MagicaVoxel files. The
application only allocates enough memory for 512 x 512 x 512 voxels. This is plenty for most use
cases, but if by chance a user forgets about this limitation or an attacker would want to go past the
bounds that have been set, they could possibly modify other pieces of memory on the heap.

3.2 CYBER SECURITY COUNTERMEASURES

In order to avoid the concerns that we have listed above, we have included checks as to what values
of the input file are being read. For example, if we are reading in the value for window height, the
only acceptable values are in the range of 768 and 1080. If the values aren’t in the range, the
application exits and gives an error message as to why it exited. We are also only reading in
numbers, so even if the user enters anything besides a number, the characters will be converted to
numbers. If the numbers end up overflowing, that is fine because we check that the numbers are in
the correct range for the program to run correctly.

In order to fix the concern relating to the voxel memory, we check to make sure that the files that
we are reading in will fit in memory.

MEMWORLD GPGPU ACCELERATION 10

4 Design

4.1 PRIOR WORK

4.1.1 Prior Work/Solutions

This is a paper from NVIDIA demonstrating how they implemented a sparse voxel octree. This is
more complicated than we need ours to be. It is an efficient way to traverse a world to find voxels.
We also are restricted by not being able to use a sparse version of the world (i.e. we have to
represent empty space as a zero in memory).

Laine, Samuli, and Tero Karras. "Efficient sparse voxel octrees–analysis, extensions, and
implementation." NVIDIA Corporation 2.6 (2010).

We found a thesis paper done on a similar idea. While they are able to get high fidelity static
models working with their design, real time animation appears to be difficult to accomplish with
their work. This means that for our purposes, game development, it is likely not a feasible strategy
to follow.

Crassin, C., Neyret, F., & Sillion François X. (n.d.). Gigavoxels: Un pipeline de Rendu Basé Voxel
pour l'exploration efficace de scènes larges et détaillées (thesis).

Here is a 3D voxel engine,

This is Ken Silverman’s personal project which is a similar 3D voxel engine. He explains part of his
process on the website and in the readme for the project, mainly just having tips for certain parts of
the implementation. The issues with this source is that the notes and codes are not outsider
friendly. The notes read like personal memos and the code is hard to understand for someone other
than the dev.

Silverman, K. (2018). PND3D demo and source code. Retrieved 2022, from
http://advsys.net/ken/voxlap/pnd3d.htm

This is a tutorial that talks about modern rendering techniques that are used for triangle based
meshes. It goes over many different optimization techniques, different types of shading, and the
math behind all of it. Even though our project doesn’t use triangle based meshes, some of the
concepts still apply.

“Computer Graphics for the 'Rest of Us'.” Scratchapixel, 31 Aug. 2022,
https://www.scratchapixel.com/index.php?redirect.

4.1.2 Comparison to Prior Work/Solutions

Raycasting is an existing concept. The purpose of this project is to take the problem of raycasting
and optimize it using the physical resources available to the computer. In this way, the scope of our
problem, while challenging, does aim to improve upon currently existing standards if it doesn’t at
least try to find a different way of implementing them.

MEMWORLD GPGPU ACCELERATION 11

When looking at the other voxel-based rendering implementations, ours is different because of our
direct memory representation of the world. Octrees are widely used across these voxel-based
implementations, but octrees are useful for representing a sparse world allowing for many layers in
the octree. Having a direct memory representation means that we store the zeros in memory. This
gives us the ability to add and remove voxels faster, at the cost of more memory, and the voxel
octree that we implemented added even more memory to store the meta-data.

In terms of the tutorial about modern rendering techniques, it helped us in determining how we
could improve our voxel based rendering based on previous techniques and what would be possible
during our time in this class. Primarily the use of bounding boxes and chunk based rendering was
inspired by this tutorial. The solutions to these problems are still quite different because the direct
memory representation of the voxels in our model aren’t being rendered the same way that triangles
would be rendered.

4.2 DESIGN EVOLUTION

System Interaction Diagram

4.2.1 Renderer

491 Design:

Since we started 491, the renderer has changed a lot. At the end of 491, the rendering algorithm was
based on using a voxel octree. This was efficient because we could traverse large empty distances
quickly as it cut down on the amount of cache misses that we were seeing. There were still
problems with objects having jagged edges depending on how high the voxel density was. If the
object was only one voxel thick, there would also be flickering in the render. This was due to the
nature of how we were skipping along the ray in order to get to a voxel. Our client wanted us to use
a direct memory representation of the world, so bigger worlds required large amounts of memory.
The extra metadata that was required to support the octree didn’t help either.

492 Design:

Since we started 492, we started using the 3DDDA (3D Digital Differential Analyzer) algorithm.
This removed the need for voxel density as we were able to skip along the ray exactly the right
amount until a new voxel was hit instead of using an approximation. We were able to convince the

MEMWORLD GPGPU ACCELERATION 12

client to change from a direct memory representation of the world to a direct memory
representation of the objects. This allowed us to reduce the amount of memory that we were using,
but would also allow us to change how the renderer worked. So, instead of using the octree that we
had implemented, we started using bounding boxes that surrounded the objects. The renderer
would then check for ray to bounding box intersections and then traverse the objects at the
intersection. This became expensive if we were to check bounding box intersections of every object.
We then implemented a way to separate the world into chunks. Each chunk would contain the
number of objects and an array of object indexes that it contains. The renderer would traverse the
chunks along the ray, checking the objects that are contained within the chunks. Since the renderer
now works by checking ray to bounding box intersections, we can move objects by changing the
position of the bounding box, and the voxels will follow.

4.2.2 Physics

491 Design:

During 491, our design for physics was primarily voxel-based physics where we would move
individual voxels and have voxels collide with each other. When moving large objects, the cost of
moving all the voxels becomes quite expensive. The need to check from collisions on all of the
voxels adds more complexity to it as well. The player would only collide 1 voxel at a time where the
camera was located.

492 Design:

Since we started 492, the change of the rendering algorithm led to an increase in performance of the
physics implementation because of the addition of bounding boxes. The addition of bounding
boxes allowed us to check bounding box collisions, which is cheaper, and if there is a bounding box
collision, then, we check for voxel based collisions. The renderer uses the bounding boxes to display
the objects. This allows us to move the bounding box which “moves” the voxels around with the
bounding box without having to move them around in memory. The camera now has a bounding
box associated with it to give the player some height. The camera has another smaller bounding
box as well that determines if the player can jump over small changes in voxel height. We can tell if
the player can jump over small voxel objects if there is a bounding box collision with the larger
bounding box and no bounding box collision with the smaller bounding box. There is also a way to
create moving platforms for our 3D-platform where you can set points in the world and the
platform will interpolate between the points by the amount of steps specified.

4.2.3 Memworld

491 Design:

During 491, objects contained in memworld weren’t fully distinguishable and were merged with the
rest of the world. There was also only one world that we could create to move around in, and there
was no way to change worlds.

492 Design:

MEMWORLD GPGPU ACCELERATION 13

Since we started 492, the objects are now represented by their bounding boxes. In order to not have
to check each bounding box, we separated the world into chunks as was described in the renderer
section. When importing an object into the world, the object would be placed in the chunks that
contain it. These chunks get updated every time the object moves. This isn’t too expensive as
objects on average are only contained by one chunk. There is now a starting room in our game with
4 portals. Each of these portals lead to a different world. The world is able to change by writing
over the previous voxels and updating the indexes of each object to know where the voxels are
located. Since there aren’t many objects in each world, world loading is not noticeable by the
player.

4.2.4 OpenCL Implementation

491 Design:

In 491, the voxels were represented in the 3D world space. For example, if a voxel was located at
(400, 500, 100), the voxel would be in that place in memory. Changing voxel objects from the CPU
was done by updating a large chunk of the world. For example, if the world was 1024 by 1024 by
1024 and you had a voxel object that was 50 by 50 by 50 voxels, you would have to enqueue a write to
the GPU of 50 by 1024 by 1024 which is a lot more memory than could have possibly been changed.

492 Design:

Most of the design for the OpenCL implementation is the same from 491. Since we started 492, the
new implementation of the renderer allowed us to represent the voxels in a different way that was
less wasteful of memory. Voxels are now represented as their location within a bounding box. For
example, if the third object was added, and the bounding box was (50, 50, 50), the voxels contained
within the bounding box are added to the voxel array at the index where the last object ended.
Instead of representing the whole world, the individual objects are fully represented in memory,
empty spaces included. Representing individual objects also allows us to update voxel objects from
the CPU a lot faster by only changing 50 by 50 by 50 voxels in a 1024 by 1024 by 1024 world.

MEMWORLD GPGPU ACCELERATION 14

5 Testing

5.1 TESTING PROCESS

5.1.1 UNIT TESTING

- File importer: Load .vox files made in MagicaVoxel into Memworld to test the bounds of the
program and ensure consistent results with what was created in MagicaVoxel.

- Create OpenCL program: Make sure all necessary files are working on the system. Have all
API calls for OpenCL defined for the kernel, work groups and enqueueing. Make sure the
application can be built with the setup by running the makefile and watching for errors.

- Run OpenCL program: Have defined inputs with expected outputs for the application.
Establish these inputs/outputs for the serial application and compare inputs/outputs for
the OpenCL implementation.

- Physics: Have a predefined input of objects in the world, have an expected outcome of how
they will interact with the world, and check their coordinates to make sure the results
match up with our expectations.

Tools:

- We will write our own unit tests in a separate c file that we create.
- MagicaVoxel for quick and testable world and object files

5.1.2 INTERFACE TESTING

- Internal API Calls: As our project is effectively a rendering API, we want to ensure that it is
easy for developers to use it to render scenes defined in memory. In order to do this, we
have a test program with a main function that shows the uses of the functions in the API. If
anything seems counter to how it should be used or difficult to set up, we will be able to
reorganize the API calls and functions to ensure the usage pipeline is smooth and simple.

5.1.3 INTEGRATION TESTING

- File and world importing:
- File importing and world importing are critical to the project as they make sure

that the world bounds and voxel array are properly generated. If they have any
issues then the program will quickly crash when running, so it’s vital that these are
tested together to confirm they work.

- These will be tested with our own created functions to confirm they work together
without causing any issues in the generation.

- OpenCL and renderer:
- OpenCL is the framework that is tasked with making this application more

efficient. The renderer will work on generating the world that we define. The
renderer will be parallelized using the OpenCL framework, so it will be critical that
these two are integrated correctly. Possible issues that can arise from poor
integration would be poor efficiency or the world not rendering correctly.

MEMWORLD GPGPU ACCELERATION 15

- These will be tested by checking inputs and outputs for the renderer and verifying
correct definitions for the OpenCL api calls/ setup for what we want to run for on
the kernel.

- Physics and renderer:
- Physics will involve many objects moving around the world and interacting with

one another. With this, we need to make sure that the renderer is properly
displaying the objects as they move and won’t have any overlapping or graphical
bugs.

- This will be tested visually to confirm that no graphical errors are happening.
- Lighting and renderer:

- Lighting will allow the application to produce a light source to introduce shading.
The renderer is tasked with displaying the world which will include lighting
components. Integration will be important to ensure that there are no
abnormalities with how lighting is functioning in the world and having the
application run efficiently.

- This will be tested visually to confirm that no graphical errors are happening.

5.1.4 SYSTEM TESTING

- For our system level testing strategy, we will be taking all of the components from
integration testing and making sure that each of the components is working properly in
accordance with our requirements.

- We will focus on changing the world size, window size, and render distance to make sure
that we are meeting the input and output requirements that are given.

- System level testing is to go through full use cases and check that each system is behaving
as expected. Interface testing would involve going through normal inputs and verifying that
the system reacts appropriately for expected and unexpected inputs. Unit testing would
involve verifying results of specific modules during a use case, an example would be
checking physics based collisions. Integration tests would be for use cases that touch
multiple components of the system. An example would be importing an object and making
sure the world is correctly set up with said object.

- Tools:
- Dr. Memory for memory leaks

5.1.5 REGRESSION TESTING

- We are ensuring that new additions do not break the old functionality by running our unit,
interface, integration, and system tests before submitting a merge request for the code that
is being created for the task assigned. We will also be creating the necessary tests needed
for future regression testing of the new code.

- Some critical features that we do not want to break in this project are:
- The kernel rendering function because that is what we use for displaying the scene

to the user. If this is broken, the user wouldn’t be able to use the program properly.
- The file importer function because that is what we use for loading our scene with

objects. If this is broken, the user wouldn’t be able to see the world correctly.

MEMWORLD GPGPU ACCELERATION 16

- Creating the OpenCL program pipe as well as running the OpenCL program needs
to work. If OpenCL doesn’t work, we won’t be able to meet the FPS requirements
as well as the world won’t be rendered correctly.

- Physics needs to be close to be correct. There is not a necessity for accurate
physics, but we would like objects to fall and jumping to work for our demo
application.

- The regression testing is driven by our requirements, but there will also be extra testing to
make sure that modules needed to meet requirements are implemented correctly.

5.1.6 ACCEPTANCE TESTING

- We have a list of requirements from the client such as a target frame rate, target voxel
density, and target world size. Voxel density and world size are configurable variables inside
our project, so we can simply set those variables to our requirements and run the program
to make sure that those requirements are met. For frame rate, we are using a formula to
calculate the frame rate of the project, and it is output to the application window, so we can
take the average frame rate and compare that to our requirements to ensure that it meets
expectations.

- We involve our client by showing memworld running to different specifications and
ensuring that he is satisfied with the progress we are making. We run our ideas for new
modules that we want to add by him to make sure that we are meeting what he invisions.

5.2 TESTING RESULTS

Using Dr. Memory in order to look for memory leaks, we were able to clear up all but two bytes of
leaked memory. The last 2 bytes of memory that were leaked were not under our control.

In terms of testing the performance of our application, listed below are the target settings that were
given to us. The application has changed over time which allows us to test using the testing settings
listed below.

Target Specifications

Voxel Density Window Size Draw Distance World Size Average Frame Rate

5 1024 x 768 100 Height: 16 * Voxel Density
Width: 25 * Voxel Density
Depth: 40 * Voxel Density

Result of testing for
FPS

Testing Specifications

Voxel Density Window Size Draw Distance World Size Average Frame Rate

N/A 1024 x 768 1024 Height: 1024
Width: 1024
Depth: 1024

Result of testing for
FPS

MEMWORLD GPGPU ACCELERATION 17

Systems of Each Team Member

GPU used Operating
System

CPU RAM Average Frame Rate
(World 1, 2, 3, 4)

Collin NVIDIA GeForce
GTX 1060

Windows 10 Intel i7-7700HQ 16 GB 45, 70, 55, 100

Cristofer Radeon RX 580

Apple M1

Windows 10

MacOS

Ryzen 5 2600

Apple M1

16 GB

8 GB

33, 33, 50, 100

213, 238, 233, 226

Dalton NVIDIA GeForce
GTX 980

Windows 10 Intel i5-4690k 16 GB 70, 100, 80, 111

Jay NVIDIA GeForce
GTX 1070

Windows 10 Intel i7-6700k 16 GB 90, 130, 100, 140

Mason NVIDIA GeForce
GTX 1060 with
Max-Q Design

Intel(R) UHD
Graphics 630

Windows 10 Intel(R)
Core(TM)
i7-8750H CPU @
2.20GHz

16 GB 67, 91, 71, 143

56, 59, 57, 77 (pixel density 2)

Wil NVIDIA
GeForce RTX
3070

NVIDIA GeForce
GTX 970M

Windows 10

Manjaro
Linux

Intel 10th Gen i7

Intel 6th Gen i7

16 GB

12 GB

250, 275, 225, 275

N/A

Our design for testing is useful because we get to have our code tested on a variety of platforms and
see what the performance is based on the different hardware that is available. This helped us
determine if we were moving in the right direction or if we needed to change how we are rendering
and/or taking inputs from the user. The one downside of testing an application like ours is that we
have to manually run systems tests which is harder to do because humans are not perfect at
replicating actions. With everyone testing, we have been able to detect what is wrong and what
needs to be changed with most of the bugs that occurred.

MEMWORLD GPGPU ACCELERATION 18

6 Implementation
6.1 MEMWORLD IMPLEMENTATION

This is where our main function lies. We first read in the settings file and determine if we should
use the default settings of the application or what is contained in the settings file. We then
initialize the memory for the voxels in the world as well as the texture that we are displaying to the
screen in order to render the world. After the buffers are set up, OpenCL is initialized (described in
the OpenCL Implementation section), voxel objects for the world are read in, and the chunks
containing those objects are updated. OpenGL is then initialized to be able to display the texture
that we are generating to a plane. Then, the main loop starts running until there is a signal to the
application that it should close (pressing Q or the X button in the top right corner). In the loop,
mouse and keyboard inputs are processed, and then, the rendering kernel is sent to the GPU to run.
While the renderer is running, physics is updated for all the objects. The application then waits for
the renderer to finish processing and return the texture data for OpenGL to use to display the
texture to the application window.

6.1.1 World Chunks
The world size that is supported by the application is 1024 x 1024 x 1024 voxels. This world is split
up into 8 x 8 x 8 chunks where each chunk contains an array of indexes of the objects in the objects
array. Each chunk also contains the number of objects in the chunk. To determine if an object is in
a chunk, we take the bounding box of each object and if the bounding box is inside of the chunk,
the object is added to the chunk. Using chunks speeds up the rendering algorithm as it is only
checking objects that could intersect with a ray instead of checking all of the objects for every ray.

6.1.2 Moving Objects
In order to move objects, the bounding box of the object is moved by the amount that the object is
intending to move. Every time that an object is moved, there is a possibility that the object will
move out of its chunk and into another chunk. This is the reason why the object is removed from
its chunk, and then, it is moved. Once it has moved, the chunks are updated based on the new
position.

6.1.3 Input Handling
The player is represented as a camera (i.e. the player doesn’t contain any voxels). The default
camera speed is 1. Powerups can increase the speed of the player. GLFW allows us to get inputs
from the player. WASD keys move the player using sin and cos of the azimuth of the player. In
other words, it allows the player to move where they are facing. The player is able to jump using the
space key. Based on these inputs, the player's position is updated by the change indicated by the
inputs. Collision detection of the player is then calculated after the position is updated. First, the
bounding box collision is checked, and then, if there is a collision, the voxel based collision is
checked. If there is a collision the player is moved until there are no more collisions and the
player’s y velocity is set to 0. For detecting mouse inputs, there is a callback function that is created
for GLFW to use. It takes the difference between the current mouse position and the previous
mouse position and updates the altitude and azimuth accordingly. There are checks for max and
min azimuth positions, so the player won’t be able to look up so far that the camera inverts itself.

MEMWORLD GPGPU ACCELERATION 19

6.2 OPENCL IMPLEMENTATION

6.2.1 Setup
OpenCL is what enables the rendering algorithm to run on the GPU using multiple threads. First,
the application grabs the different GPU platforms that are available on the user’s device. That is
when the user chooses the platform they would like to use or the setting file automatically chooses
the platform for the user. A compute context is then created along with a command queue. The
application then reads in the render algorithm stored in a file. There are certain defines at the top
of the renderer which get modified based on some settings the user selects. This is done in order to
speed up the renderer by removing some of the source code that isn’t necessary based on the
settings. The kernel program is then built and the memory needed to be sent to the GPU is
allocated.

6.2.2 Adding Objects to the World
OpenCL can only take in one dimensional arrays, so we have an array that holds all of the voxels for
the application. When the application reads the voxel data in from a file for the world, the
application sets the memory on the GPU to match that read in from the file. When the next object
gets read in, the application sets the memory starting after the first object's length of memory.
Each object keeps track of the index in the array that the data is stored at in order for the renderer
to know which data belongs to which object. When changing worlds, the offsets for where the next
object is going to be stored is reset, allowing us to overwrite the previous data in the array.

6.2.3 Main Loop
For every frame that gets rendered the application sets the arguments to the kernel that was
compiled, and then, the kernel is enqueued to the command queue. When the kernel is enqueued
to the command queue, the work size is set. This determines how many threads are used for
running the kernel. We set the amount of threads to equal the amount of pixels in the image (one
per pixel). The GPU runs the kernel. To get the data back to show the image to the application
window using OpenGL, the application waits for the command queue to be finished executing
tasks. The application enqueues a read buffer to the command queue in order to read a certain
amount of data from GPU memory.

6.2.4 Teardown
After the application has finished running the memory that has been reserved gets released along
with the context, command queue, and kernel.

6.3 RENDERER IMPLEMENTATION

Our implementation for the renderer has been changed from what was stated in the design section
from the previous semester. We now encapsulate the objects with bounding boxes that contain all
of the voxels in the object. Each of these objects are then put into an array of chunks that make up
the world. The world is 8x8x8 chunks split by the world size that is indicated. If an object’s
bounding box is contained in a chunk, the object is added to that chunk’s list. Using the chunk
array, a ray gets sent and traverses the chunk array using the 3DDDA algorithm. If there is an object
in the chunk. The objects in the list of that chunk are all checked to see if the ray interests the
bounding box of the object. If it intersects with the object, the distance is stored to that object.
Once all of the objects in the chunk have been checked, the shortest distance is picked to traverse.
The object is traversed from the intersection point using the 3DDDA algorithm. If a voxel is hit, the
color is set for that pixel of the image. If a voxel is not hit, the next closest object is checked the
same way. Once all of the objects in a chunk have been checked, the chunk array is traversed to the

MEMWORLD GPGPU ACCELERATION 20

next chunk. If no voxels are hit by the time the ray reaches the bounds of the chunk array, the pixel
is set to black.

6.3.1 Object Rotation
Each object is able to rotate around the y-axis. This is just a visual rotation, and the collision is still
axis aligned. This works by rotating the ray that we are sending from the camera by the angle of the
object. This is done by using a rotation matrix where the y part stays the same and the x part is
ray_x * cos(ANGLE) + ray_z* sin(ANGLE) and the z part is ray_z * cos(ANGLE) + ray_x *
sin(ANGLE). Then, the origin of the ray is rotated around the center of the object which lines the
ray up correctly to enter the bounding box. Since we are using Euler angles, there is a possibility for
Gimbal lock, but nobody has experienced it yet, and it might not be possible by the way the user's
input is translated to the ray direction.

Shown below is a diagram depicting how the rotation works. The blue lines represent the chunk
that contains the objects. The teal lines are the rays from the camera. The red bounding box is the
standard bounding box and the yellow bounding box represents the rotated object.

Object Rotation

6.4 LIGHTING

6.4.1 Distance based
The distance that we get from the point of intersection of the ray and the object, from the start of
the ray, is divided by a view distance set by the user in the settings file. We take one minus that
percentage in order to get the percentage in which we reduce each r, g, and b component of the
color.

Shown below is an image of distance based lighting. The further the voxel is in the world, the
darker it becomes.

MEMWORLD GPGPU ACCELERATION 21

Distance Based Lighting

6.4.2 Ray based
The render kernel is compiled at runtime, so ray based lighting has a define in order to reduce the
amount of code in the kernel to speed up slower GPUs. If ray based lighting is defined, once a voxel
is hit by the initial implementation, a second ray in the direction of the far upper corner from the
point (0, 0, 0) is traversed to determine if a voxel is hit. If no voxel is hit within the current object,
the pixel is shaded normally. Otherwise, the pixel is shaded by reducing the color by 50%.

Ray Based Lighting

MEMWORLD GPGPU ACCELERATION 22

6.4.3 Pixel Density
If the pixel density is 2. Then, for each ray from the camera, a 2x2 pixel is drawn to the screen. This
helps decrease the amount of threads that are needed to run on the GPU which speeds up smaller
GPUs like the integrated graphics chip some computers have installed.

Shown below is an image of a pixel density of 3. The performance increases, but the lines aren’t as
crisp.

Pixel Density

6.5 PHYSICS IMPLEMENTATION

Only objects that are moving are checked for bounding box and voxel based collision. That could
be if they are affected by gravity or have their x or z velocities not equal to 0. For objects affected by
gravity, there is a dampening effect, so they don’t bounce forever. When the velocity in the y
direction is close to 0, then the y velocity is set to 0.

6.5.1 Bounding box based collision
Every object already has a bounding box associated with it for the rendering of the objects to work
properly. The objects bounding boxes are axis aligned bounding boxes, so we are able to check the
intersection of two boxes by comparing the side positions to each other along the x, y, and z axis. If
there is an intersection, the objects get moved in the opposite direction in which they came by the
intersection amount.

6.5.2 Voxel based collision
In order to save time, we first check if there is a bounding box collision between 2 objects. If there
is a collision, the object is then checked for voxel collisions by using the size of the moving objects
bounding box and checking voxels of the object against voxels in the same position of that of the
object's voxels. In order to move the object out of the other object, the object moves up, checks for
collisions, then right, checks for collisions, and finally left. The player would get stuck on small
ledges because of this because there would be a voxel collision. To remedy this, the player has 2

MEMWORLD GPGPU ACCELERATION 23

bounding boxes. One is the full bounding box and the other is a smaller height bounding box that
is raised up. If there is a voxel collision in the first and not the second, then the player will move up.
This acts like an automatic jump feature to get over small bumps in objects or allows the player to
flow up ramps.

6.5.3 Moving platforms
We are making a 3D platformer for our game which usually includes moving platforms. Our
implementation of the moving platforms involves setting 4 different points that the platform will
interpolate between where the last position is the position in which the platform starts. We define
the amount of steps that the platform takes between points to indicate how long the platform will
take to move. If the player collides with a platform (is standing on top of the platform), the player
will move along with the platform. This is done by moving the player the same amount as the
platform is moving.

6.6 WORLDS IMPLEMENTATION

6.6.1 Memworld Test Application Design

Gameplay Overview:

- The type of test application that we are planning to make will be a 3D platformer.
- There will be 4 different levels that increase in size as you progress through the levels up to

a max size of 1024 x 1024 x 1024.
- The overarching goal in these levels will be to acquire various collectables
- There will be an area that will be the hub in which you will be able to choose which level

you want to enter.
- The user will be able to press the “H” key if they want to go back to the hub area.
- The application will attempt to utilize the full range of our 1024 x 1024 x 1024 voxel worlds

by incorporating verticality in the level design.
- The application will provide hazards or failure states in the level design (lava, pits, enemies,

etc…) to provide some kind of challenge.
- The application will put a major focus on displaying the strengths of the engine by

highlighting working features (pillars/windows to show off shadows, falling objects/moving
objects for physics, etc).

6.6.2 Hub World
Hub World

In order to allow players to select which world they
want to play in, we incorporated a simple hub world for
them to start in. This world is a simple room with 4
color coded portals located within it. Walking into any
of the four portals teleports you to the world associated
with it. World 1 is yellow, world 2 is green, world 3 is
red, and world 4 is white. in order to allow for players
to swap worlds at any time, the hub world can be
accessed by pressing the H key during gameplay.

MEMWORLD GPGPU ACCELERATION 24

6.6.3 World 1

World 1

The first world takes place in space, where you are
jumping from spaceship to spaceship attempting to
reach the large green ship in the distance to access
its biosphere, an artificial forest and the setting for
world 2. As it is the first world, it starts
mechanically simple to ease the player into the
game, requiring only simple platforming to
progress. The first collectible can be found here as
well, hidden on the lower wing of the larger, more
detailed ship.

On the technical side, the world contains only 19
objects with only two of those objects containing
any special properties, the star for collecting and
the goal for world traversal. Two of the objects, the
goal and the goal warship, have been scaled up and the goal post has been rotated to be visible from
the start of the map. While the world only contains 19 objects with these simple additions, the
objects used are highly detailed and quite large, which can lead to performance issues if more were
to be added.

6.6.4 World 2

World 2

The second world takes place in a biosphere, which
is full of trees and a large cabin. The collectible for
this level is another star, this time taking place on
top of the cabin, which is normally not a required
area in order to progress through the level. This will
require players to progress through the level as
normal by going from treetop to treetop, eventually
reaching the largest tree. This large tree contains a
powerup that will allow the player to do a double
jump, and during this time they will have a much
easier time reaching the cabin to get the optional
collectible. They must then utilize the double jump
to get to a tree near the corner of the map that, while not as tall as previous trees, is still too high to
be accessible without the double jump being acquired. Upon reaching this tree, they will find the
goal which will teleport them to the third world.

From a technical standpoint, this world required several workarounds to keep the overall world
running smoothly. For one, we created several different types of trees, and utilized the scaling
feature in order to scale trees up to various heights. This allowed us to have interesting interactions
with jumping from different tops of different trees in order to achieve a sort of verticality with our
level design. This scaling came at a cost however, as this resulted in a lot of empty space taking up
memory with our bounding boxes for these trees, as the main trunk was connected to the leaves, so

MEMWORLD GPGPU ACCELERATION 25

the box would be as wide as the leaves and thus go through the empty space near the trunk of the
tree. This required us to modify the assets used for our trees to separate the trunks from the leaves
and count them as two separate objects, which greatly increased the performance of the world.

6.6.5 World 3

World 3

The third world is back in space similarly to world 1.
There are different spaceships that function as
platforms for the player to jump on as well as meteors
that continuously fall to act as an obstacle for the
player. The player is expected to go from one spaceship
to the next until they reach the final platform. When
the player is hit by a meteor they are sent back to the
starting platform to try again. The meteors also are
sent to the top of the world to fall again whenever they
hit the bottom of the world. This level was kept
relatively short so that the player won’t have to spend
too much time getting to where they were when they
got hit. This level was relatively straightforward to implement. The only limitation was that the
meteors needed to be fairly small voxel count wise else it would greatly reduce performance since
there are a lot of them falling at once.

6.6.6 World 4

World 4

The fourth and final world takes place on a Moon-esque
world with moving rocks floating above the surface. The
goal for this world is that the player must collect a
handful of stars that are placed throughout the world.
The player must use moving platforms (massive rocks
floating above) to reach the star collectables. Given that
this world is based off the moon, the gravity for this
level has also been changed to -3, as opposed to -9.8 in
the other worlds. This will give the player some help
with traversing each platform and with reaching the
stars that are placed in harder to reach locations. Once
all stars are collected, the player must make their way toward the highest platform in the world
using the moving platforms. This platform is not moving and contains a teleporter that will send
the player back to the Hub. Effectively, ending the game.

MEMWORLD GPGPU ACCELERATION 26

6.7 UI IMPLEMENTATION

The application displays the current FPS in the top right corner and the number of stars the player
has collected in the top left corner. In order to display the text and numbers to the screen,
characters are encoded into 8 x 8 bitmaps. The 8 x 8 bitmaps are provided by Daniel Hepper
(Hepper). We are able to do this for strings or numbers by indexing the bitmap array where the
number or character is located. Using these bitmaps we change the color of the texture at a
location if the bit in the bitmap is a 1.

Shown below is the UI that we have for the application.

UI Implementation

6.8 FILE IMPORTER IMPLEMENTATION

6.8.1 Type of Files
The files that our group is importing to our application are .vox files. These are in the format given
by MagicaVoxel (see “Voxel Model Github Repository” by Ephtracy in the appendices). They
contain color and location information for each voxel in the model along with the total length,
width and height of the model.

6.8.2 How it Works
Our program opens and reads through the .vox file to gather the information required to
incorporate it into the world. First, it finds the number of voxels within the object and checks that it
doesn’t exceed the maximum number of voxels our system can handle. We then select a for loop to
run depending on the rotation style selected, as the rotation will necessitate a translation to occur
during every iteration of the loop. Within the loop, we assign every single voxel within the
bounding box an RGB value which is selected from the default palette. If we are scaling up the
object, we assign a cube of voxels with dimensions equal to the scaling factor for each voxel in the
original .vox file. This allows us to import objects larger than the 256 x 256 x 256 limit of the .vox
format, though with the trade off of less fidelity.

6.9 UNIT TESTS IMPLEMENTATION

We are not using a library for unit tests, but instead made our own in order to run unit tests. We
chose to do this because we wouldn’t have to learn a new library and instead could make something
that made sense to the group. The tests are run off of one function that takes in a function pointer
to a test function and totals up all the passed tests that are associated with a certain file. The results
are then printed out. If the tests fail, the user will know which test failed by the error printed out.

MEMWORLD GPGPU ACCELERATION 27

7 Closing Material

7.1 DISCUSSION

This project is a mix of a product and an experiment. Our group was assigned this project to see if
having a direct-memory representation of a voxel would increase the speed of different aspects of an
application such as collision detection or rendering. The client already had a proof-of-concept ray
casting engine and wanted us to improve the speed with certain requirements that needed to be
met. As of this moment, the new renderer is roughly 300x faster (on certain computers) than the
proof-of-concept given to us in a much bigger world with a longer range of vision. We are meeting
the FPS requirements of 30 frames per second on almost all of the GPUs. The integrated graphics
chip struggles and hovers around 20-30 depending on the world. This can be improved by using a
pixel density of 2 which averages around 60 FPS. Collision detection is faster compared to that of
modern game engines, but our group’s rendering struggles to compete on a high texture density
level because of the hardware acceleration for modern rendering on GPUs.

7.2 CONCLUSION

Throughout these two semesters that we have been working on this project, we have learned a lot.
Most of the team has never worked with or understood how games were rendered. Given that this
project’s main objective was to improve the performance of a renderer for direct memory based
voxels, we all learned something that is valuable as most applications have to deal with some sort of
rendering.

Another important lesson of this project is learning how to work in a larger group. We had a total
of 6 people in our group. Throughout college the most people classes allowed in a group was up to
4. A group of 6 people adds complexity to making sure that everyone has something of value to do
and that everyone is understanding how the application works. This is an important lesson to learn
because in industry there is a high probability that you will work in larger groups.

The last big lesson that was taken away from this project was how to work on and maintain a
project for a long period of time. Projects in industry can last for years and keeping a clean
repository, commented code, and documentation about the project is something that is crucial in
keeping high productivity of the current team and new members that could join in the future.

Overall, this capstone project has aided us in getting a glimpse into what working in industry will
look like, and what we should expect when we graduate.

MEMWORLD GPGPU ACCELERATION 28

7.3 REFERENCES

C. Crassin, F. Neyret, and Sillion François X., “Gigavoxels: Un pipeline de Rendu Basé Voxel pour
l'exploration efficace de scènes larges et détaillées,” thesis.

“Computer Graphics for the 'Rest of Us'.” Scratchapixel, 31 Aug. 2022,
https://www.scratchapixel.com/index.php?redirect.

Ephtracy, H. Castaneda, DimasVoxel, and J. Kirch, “Voxel Model Github Repository,” GitHub,
17-Jan-2022. [Online]. Available: https://github.com/ephtracy/voxel-model.

Hepper, Daniel. “font8x8/font8x8_basic.h At Master · Dhepper/font8x8.” GitHub, 11 June 2019,
https://github.com/dhepper/font8x8/blob/master/font8x8_basic.h.

K. Silverman, “PND3D Demo and Source Code.” [Online]. Available:
http://advsys.net/ken/voxlap/pnd3d.htm.

Laine, Samuli, and Tero Karras, "Efficient sparse voxel octrees–analysis, extensions, and
implementation." NVIDIA Corporation 2.6 (2010).

Wilhelmsen, Audun, “Efficient Ray Tracing of Sparse Voxel Octrees on an FPGA” Norwegian
University of Science and Technology, Trondheim

7.4 REFERENCES - ART ASSETS

GameStudioJukaaa. (2019, January 18). Voxel Space Ship. OpenGameArt.org. Retrieved 2022, from
https://opengameart.org/content/voxel-space-ship-0

edited sizing and color

Parata, M. (n.d.). 10+ voxel spaceships assets for free by maxparata. itch.io. Retrieved 2022, from
https://maxparata.itch.io/voxel-spaceships

edited sizing and color

Parata, M. (n.d.). Free Voxel Graveyard asset by Maxparata. itch.io. Retrieved 2022, from
https://maxparata.itch.io/voxelgraveyard

edited sizing and color

Parata, M. (n.d.). Voxel environment : Counrty side by maxparata. itch.io. Retrieved 2022, from
https://maxparata.itch.io/counrty-side

edited sizing and color

Texnist. (n.d.). Voxel spaceships by Texnist. itch.io. Retrieved 2022, from
https://technistguru.itch.io/voxel-spaceships

edited sizing and color

MEMWORLD GPGPU ACCELERATION 29

https://github.com/ephtracy/voxel-model
https://maxparata.itch.io/voxelgraveyard
https://maxparata.itch.io/counrty-side

8 Appendices

8.1 OPERATIONAL MANUAL

Setup for Windows:

Part 1: Downloads

The following items will need downloaded in order to properly run this program:

GLFW (available at https://www.glfw.org/),

Vulkan SDK (available at https://vulkan.lunarg.com/sdk/home#windows, get the windows SDK
installer. Run the installer as normal, default options should be fine.)

Doxygen (available at https://www.doxygen.nl/download.html, scroll down to Sources and Binaries,
select the binary distribution for Windows. Run the installer as normal, default options should be
fine.)

CMake (available at https://cmake.org/download/, select the Windows x64 Installer)

MinGW-W64 (available at https://sourceforge.net/projects/mingw-w64/files/, scroll down to the
MinGW-W64 GCC-8.1.0 section, download the "x86_64-posix-seh" version)

OpenCL (available at https://github.com/KhronosGroup/OpenCL-Headers)

Part 2: Setup

Extract the "mingw64" folder of your posix-seh zip file you downloaded earlier to the root of your
drive (ex: C:\mingw64). Next, rename this folder to "MinGW" for easy use in the future.

Next, make sure that all of these programs have been added to your PATH. To check, Press the
windows button, and search for "Edit the system environment variables". This should open up a
"System Properties" window. Click the "Environment Variables..." button. Under the "System
variables" tab, select the "Path" variable, then click edit.

Confirm you have the following in your path (if you don't, add it now):

"C:\VulkanSDK\1.2.198.1 (or some other version)\Bin",

"C:\Program Files\doxygen\bin",

"C:\MinGW\bin"

Part 3: Installing glfw

Make a folder on your desktop called "glfw". Open this folder, and make another folder named
"glfw" inside this folder. Next, Take the downloaded glfw zip from part 1, and extract the contents to

MEMWORLD GPGPU ACCELERATION 30

https://www.glfw.org/
https://vulkan.lunarg.com/sdk/home#windows
https://www.doxygen.nl/download.html
https://cmake.org/download/
https://sourceforge.net/projects/mingw-w64/files/
https://github.com/KhronosGroup/OpenCL-Headers

your desktop. You should have on your desktop a folder called "glfw", and a folder called something
like "glfw-3.3.6".

Next, open the CMake program you downloaded earlier. In the "Where is the source code:" option,
navigate to your "glfw-3.3.6" folder. In the "Where to build the binaries:" option, navigate to your
"glfw" folder. Press "Configure" down at the bottom, and in the specified generator, look through the
dropdown and select the "MinGW Makefiles" option. Make sure that "Use default native compilers"
is selected, then press finish. The following options should be checked, the rest should be
unchecked:

"GLFW_BUILD_DOCS", "GLFW_BUILD_EXAMPLES", "GLFW_INSTALL"

Next, change the value of "CMAKE_INSTALL_PREFIX" to point to the folder "glfw", specifically the
folder "glfw" inside your "glfw" folder on your desktop. Finally, press "Generate".

Open your terminal (Like cmd), and navigate to your desktop "glfw" folder. Type "mingw32-make"
and press enter. Wait for this to finish, then run "ming32-make install" and press enter.

Now, you need to copy some files into MinGW. Navigate to the following directory:
"C:\users\username\Desktop\glfw\glfw\lib", and copy the libglfw3.a file to both your
"C:\MinGW\lib" directory, and your "MinGW\x86_64-w64-mingw32\lib" folder. Next, copy the
"GLFW" folder inside "glfw\glfw\include" to "C:\MinGW\include" and
"MinGW\x86_64-w64-mingw32\include".

Part 4: Installing OpenCL

Extract the OpenCL zip that you downloaded earlier. Copy the "CL" folder to both the
"MinGW\include" directory, and the "MinGW\x86_64-w64-mingw32\include" directory. Next,
navigate to the directory "C:\Windows\System32", and copy the file "OpenCL.dll". Paste this in your
"MinGW\lib" and "MinGW\x86_64-w64-mingw32\lib" folders.

Part 5: Running the project

With a terminal, navigate to your memworld project. Run "mingw32-make", then run the command
"./memworld.exe" to start the project.

Go to the “Using the Application” section for instructions on how the application works while it is
running.

Setup for Mac:
Part 1: Downloads:
GLFW (available at https://www.glfw.org/)

Part 2: Setup:
After downloading GLFW, open the folder and place it somewhere you can find it.
Proceed to open the Terminal and use the ‘cd’ command to navigate to the downloaded GLFW
folder.

MEMWORLD GPGPU ACCELERATION 31

https://www.glfw.org/

Once the user is in this folder enter the following commands:
cmake .
sudo make install

After doing this GLFW will be installed on your Mac system.

OpenCL is implemented as a framework, OpenCL.framework, on Mac which contains the
OpenCL API, runtime engine and compiler. This framework is installed by default on most
modern Mac systems.

Part 3: Run the program
Navigate to Memworld project directory using the terminal, build the program using make mac.

After building the project, an executable file named memworld will be added to the project
directory.
To run memworld, run ./memworld in the terminal

*NOTE: recommended to avoid running program on IDEs (i.e. XCode), there may be additional
framework requirements that can make running memworld unnecessarily complicated and can
spawn additional building issues, particularly with OpenCL.

Using the Application (Applies to Both Platforms):

Once you have the application running, you will be given a prompt to choose the GPU that you
would like to run the application on. Once you choose the GPU, the application will load up. The
player will be spawned in a portal room. Going through each of the portals will take the player to a
different level in the game. This is a 3D platforming game, so the player will be exploring the level
in order to collect stars and reach the exit.

Keys W, A, S, and D are used for movement. The spacebar is used to jump. The left shift key is used
to sprint. The player can press H if they want to go back to the hub area. Pressing T will bring the
player to the testing area. This was used for development purposes. The application can be closed
by pressing Q.

The application includes a settings file called “settings.txt” in the folder that includes all of the
sources. The user can change a few different settings using this file:

- Voxel Density: The values for this can be 1, 2, or 3. There is no visible difference when
changing this value. In previous versions this made the render clearer, but now it renders
at max clarity all of the time.

- Max Draw Distance: The values for this can be between 0 and 2000. This will determine
how far from the player objects will fade to black. Where 0 means the player can’t see
anything and 2000 means the player can see objects far into the distance.

- Window Width: The values for this can be between 1024 and 1920. This will determine
the width of the application window. The larger the value, the worse performance the user
will experience.

- Window Height: The values for this can be between 768 and 1080. This will determine the
height of the application window. The larger the value, the worse performance the user will
experience.

MEMWORLD GPGPU ACCELERATION 32

- Pixel Density: The values for this can be 1, 2, or 3. This will pixelate the render of the
application in exchange for better performance. The larger the value, the better the
performance the user will experience.

- Enable Ray Lighting: The values for this can be 0 or 1. This will enable or disable ray
based lighting in the application. Where 1 is for enabling it and 0 is for disabling it.
Enabling it will produce hard shadows in the application, but reduce performance.

- GPU Index: The values for this can be -1, 0, or 1. This indicates which GPU will be chosen
to run the application on. The value -1 indicates that the user will be asked to input the
GPU index at startup.

8.2 ALTERNATIVE VERSIONS OF THE DESIGN

During the first semester of senior design, most of the work was done on the render, trying to
increase the speed from what we were given. Eventually, we landed on the idea of having a voxel
octree because that is what most products with voxels utilize. Our project uses a direct memory
representation of the world, so the octree would come in terms of metadata describing which cubes
contained voxels. This required a lot of memory if we wanted to make large worlds (1024 x 1024 x
1024 voxels would require around 4.3 gigabytes to be sent to the GPU along with the metadata
which added around 200 megabytes. Some GPUs can’t handle this much memory which limits
world development.

Voxel Octree

In the diagram listed below, there is a demonstration of how the octree works and how it translates
the rays to the output screen. The eye is the camera of the character that moves around the world.
Rays are cast from the eye to an imaginary grid in the distance. For each ray, there is a work item
that is being run on the GPU. This work item computes the magnitude of the ray and travels along
the ray until it reaches a voxel that it hits. There is meta-data that keeps track of whether a voxel is
contained within a larger cube. If there isn’t a voxel within the larger cube, the ray is traversed until
it reaches the next larger cube in order to skip unneeded memory accesses. Once it hits a voxel, the
color stored in that position of the world array is transferred to the pixel array to be displayed to the
screen.

MEMWORLD GPGPU ACCELERATION 33

Octree Ray Casting Diagram

Limitations:

For our project, we were also tasked with creating an application to demonstrate the capabilities of
the renderer. Making a game to go along with the renderer seemed to be the best way to test the
renderer. In games, objects have to move a majority of the time. Moving voxel objects is quite slow,
especially if the object has hundreds of millions of voxels. Moving objects would also have to be
done on the GPU which can be multithreaded, but is still limited by the large amount of cache
misses. Physics would also need to be done on the GPU, but we would have extra time on the CPU
where nothing is happening while the application waits for the texture to be returned from the
GPU.

MEMWORLD GPGPU ACCELERATION 34

